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Abstract

We analyze information and flexibility preferences in a Savage frame-
work. Preference for flexibility is commonly modeled with subjective
states that may be completely unrelated to the objective state space.
We instead adopt a framework in which preference for flexibility is
due to incomplete resolution of uncertainty from the objective state
space before making a choice from a menu. We characterize both
state-dependent and state-independent representations of (indirect)
expected utility maximization. In both cases, the decision relevant
hidden information that the decision maker expects to obtain prior
to a choice from the menu is uniquely identified.
Keywords: Knowledge, Flexibility, Uncertainty, Information

1 Introduction

In many settings, decision makers prefer to gain more information to make
better decisions. In some cases, which information a decision maker uses
can be of legal or policy relevance. For example, the use of race and gender
information by managers may motivate stricter antidiscrimination laws.
The use of inside information by an investor may be criminal. However,
for analysts it is often difficult to identify what information a decision
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maker uses to make choices. In this paper, we show that under very
general conditions a decision maker’s preferences for further information
can inform an analyst about the information the decision maker expects
to gain.

Consider the example of a scientist from the Massachusetts Institute of
Technology who was convicted of inside trading (newsreport). According
to several news reports, the scientist was found out by their google search
history which included searches for how the SEC investigates inside
trading. Thus, his information seeking behavior revealed his possession of
decision relevant information that was hidden for the analysts. In our
model we formalize how all decision-relevant hidden information of a
decision maker can be identified by their preferences over binary menus
combined with information partitions.

Decisions are often made sequentially and preceding choices determine
what the agent can choose afterward and what information is available at
the next decision stage. Rational decision makers will generally want to
have more information and more flexibility in future stages. Commonly,
these different aspects are kept separate in the decision theory literature.
The literature on preference for flexibility infers from menu preferences
a potential information structure that a decision maker uses to optimally
choose from menus. The literature on information preferences following
instead analyzes when information preferences can be induced by a sub-
sequent decision problem. The present paper brings together these two
strands of the decision theory literature; the preference over information
following (Blackwell, 1953) and the literature on preference for flexibility
following (Kreps, 1979).

We employ a Savage (1954) model of decisions under uncertainty but
enrich this framework by also eliciting menu preferences and information
preferences. In our model, an agent faces a two stage decision problem.
In the second stage, the agent knows that the true state of the world is
within some event and chooses a standard Savage act from a menu. In
the first stage, the decision maker chooses an information partition and
a menu conditional on every information set that may occur. Thus, a
first stage act may be preferred to another first stage act because it offers
better information, more flexibility in the menus on some events, or the
subsequent acts in a menu lead to better outcomes on some events.

We characterize three decision models. In our first model, we assume
that the indirect utility property holds for the menu preferences but
weaken Savage’s axioms to allow for the value of outcomes to be state-
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dependent. The decision maker’s preferences can then be represented by a
sum across events of the information partition of the value obtained from
choosing the optimal subsequent act based on a state-dependent expected
utility function. Naturally, beliefs are not uniquely identified in this case.

In our second model, we weaken the indirect utility property by re-
stricting it to singleton menus but use analogous versions of Savage’s
monotonicity and likelihood outcome independence axioms to guarantee
a state-independent utility over outcomes. We further impose that infor-
mation is only instrumentally valuable. The decision maker’s preferences
can then be represented by expected indirect utility over subsequent acts
with a unique probability measure.

In our third model, we allow for an intermediate case between the
usual preference for flexibility models with a completely subjective state
space and our second model. We allow for additional information being
retrieved by the agent between the first and second stage without an ana-
lyst observing this information retrieval. We therefore call this information
“hidden”. In this model, we relax the indirect utility axiom and we impose
that both flexibility and information have a nonnegative value and that the
decision maker’s information preferences fulfill a consistency requirement.
Our axioms allow for the value of information to be zero when it would be
instrumentally useful. We show that the decision maker’s preferences can
be represented by expected indirect utility maximization but that before
making a choice from a menu, the decision maker uses a uniquely char-
acterized information sigma algebra to refine the information partition.
Thus, instead of a completely subjective state space our decision maker’s
state space when making a final menu choice is embedded in the objective
state space and from preferences it can be determined whether an agent
expects to be able to distinguish two objective states before making a final
decision.

Lastly, we discuss for our state-dependent model whether in practice
it is possible to uniquely identify the hidden information of a decision
maker. Menu preferences are well known to pose difficulties in practical
applications because the number of questions an individual has to answer
for an analyst to retrieve their menu preferences explodes as the number
of options increases. Moreover, state dependent models are well known
to pose difficulties when it comes to unique identification of utilities and
these problems could in principle extend to the identification of hidden
information. We show that this is not the case and that indeed all decision
relevant hidden information is uniquely identifiable from preferences over

3



first stage acts that yield only binary menus.
Gilboa and Lehrer (1991), Liang (2019), and Rommeswinkel et al.

(2020) discuss the existence of subsequent decision problems justifying
the information preferences of an expected utility maximizing decision
maker. Kreps (1979), Dekel et al. (2001), and Nehring (1999) discuss under
which conditions on menu preferences there exists information that an
expected utility maximizing decision maker expects to receive prior to
the menu choice.1 In this paper, we discuss under which conditions on
preferences over menus and information there exists a hidden information
partition that an expected utility maximizing decision maker uses to
choose from menus. Differently put, we analyze when the subjective
state space of preference for flexibility models can be embedded into
the objective state space and when the subsequent decision problem that
induces information preferences is a choice from the (objective) menus.
Dillenberger et al. (2014) use menu preferences to elicit the information an
expected utility maximizing decision maker anticipates to receive before
making a decision from menus. Their state space is finite and acts map
into (objective) utilities while we employ an infinite state space and utilities
over outcomes are subjective. Our elicitation method however requires
the analyst to offer different information partitions. Expected utility
maximization with hidden information is also discussed by van Zandt
(1996) and Morris (1997).

The paper proceeds as follows. We introduce our notation in section
2 and our decision models in section 3. Our axioms are discussed in
section 4 and are used in section 5 to characterize the decision models.
Section 7 shows that given any finite set of subsequent acts we can elicit
all decision relevant hidden information even in the presence of state
dependent utilities.

2 Notation

The decision maker faces uncertainty about the state of the world. Let S
be the set of possible states of the world and E be an atomless σ-algebra of
events on S.

A partition I of S is called an information partition if for all I ∈ I, I ∈ E.

1Closest to the present paper are Nehring (1999) and Rommeswinkel et al. (2020)
which study preference for flexibility and preference for knowledge, respectively, in a
Savage framework.
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I is a refinement of I, denoted I ≤ J if for all I ∈ I, there exists J ∈ J such
that I ⊆ J.

Let F be a set of subsequent acts. In the main part of the paper, we
assume no further structure on each subsequent act f , g, . . .. In the ap-
pendix that treats the state-independent case, we assume that subsequent
acts are standard Savage acts mapping states into outcomes. A menu m of
subsequent acts is a finite subset of F. Denote by M the set of all menus
m, n, . . ..

The decision maker has preferences over an information partition
combined with possibly different menus at every event in the information
partition. For this, we define an information act as a mapping a : I →
M where I is a finite information partition. For an information act a,
the information partition ι(a) is the domain of a. The definition of an
information act therefore differs from the usual decision-theoretic act by its
domain being an information partition instead of the state space. Denote
the set of all information acts a, b, . . . by A. With a slight abuse of notation,
we denote by a−1(m) =

⋃{E ∈ ι(a) : a(E) = m} the event on which m
is offered to the decision maker. An information act with information
partition {E1, E2, . . . , Ep} and corresponding menus m1, . . . , mp is denoted
by m1

E1m2
E2 · · ·mp

Ep . As standard in the literature, the last subscript (Ep

in the above case) is omitted. As a consequence, a menu m also denotes
an information act mS. If G is an event, a = m1

E1m2
E2 · · ·mp

Ep and b =

n1
F1n2

F2 · · · nq
Fq are information acts, then aGb denotes the information acts

m1
E1∩G · · ·mp

Ep∩Gn1
F1∩Gc · · · nq

Fq∩Gc . Thus, aGb is the information act with
an information partition in which states in G are distinguishable from G,
states within G are distinguishable according to the information partition
ι(a) and menus are assigned according to a.

It is noteworthy that the decision maker can never infer any additional
information from the available options in the menu about what the state
of the world is. Since information acts map elements of an information
partition into menus, the information set generated by the preimages of
menus a−1(m) is coarser than ι(a).

An event E is null if for all f , g, fEg ∼ g. If µ is a measure on E, then
for any event E with µ(E) > 0, m|E is the conditional measure such that
µ|E(F) = µ(F∩E)

µ(E) for all F.
A set function v : E → R is monotonely continuous if for all sequences

(Ek), v(
⋃l

k=1 Ek) → v(
⋃∞

k=1 Ek) as l → ∞.
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3 Decision Models

A natural starting point is an additive representation where for a menu m
available at information set E, the decision maker gains a utility v(m, E).

Definition 1 (Event Dependent Utility). ≿ on the set A defined on events
E has an event dependent utility representation if there exist a function
U : A → R unique up to affine transformations, a function v : M× E → R

monotonely continuous in its second argument such that U(a) ≥ U(a′) if
and only if a ≿ a′ and

U(a) = ∑
E∈ι(a)

v
(
a(E), E

)
. (1)

A decision maker who uses the information supplied by the informa-
tion act in order to choose optimally from m has a utility representation:

Definition 2 (Indirect Utility). ≿ on the set A defined on events E has
an indirect utility representation if there exist a function U : A → R

unique up to affine transformations, a function v : F× E → R monotonely
continuous in its second argument, such that U(a) ≥ U(a′) if and only if
a ≿ a′ and

U(a) = ∑
E∈ι(a)

max
f∈m

v
(

f , E
)
. (2)

For our main decision model, we require some additional definitions.
An information sigma algebra H is a sigma algebra on S that is a coars-
ening of E, i.e., all elements of H are also elements of E. The idea of an
information sigma algebra is that two elements s, s′ of S are distinguishable
in an information sigma algebra H if there exist disjoint events E and F
in H containing s and s′, respectively. Our motivation for introducing
information sigma algebras is that we can integrate over its events instead
of using summation across elements of an information partition. Summing
across information partitions would require that the knowledge gained
about events does not contain null sets. For example, if a decision maker
expects to gain information about a random variable on the real line and
expects to know the exact state if the random variable is nonnegative and
gain no information otherwise, then the information partition would be
{(−∞, 0)} ∪ R+. Clearly, in this case we would run into difficulties using
summation across elements of the information partition. Capturing the
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information a decision maker expects to gain in a sigma algebra directly
provides us with a method of aggregating across events even when the
corresponding information partition would contain null sets.

Let H be an information sigma algebra and E an event. Denote by H|E
the conditional information sigma algebra containing the intersections
of H with E. Let µ : E → [0, 1] be a measure and µ(E) > 0, then
µH|E : H|E → [0, 1] fulfills for all H ∈ H: µH|E(E ∩ H) = µ(E∩H)

µ(E) .

Definition 3 (State Dependent Hidden Information Utility). ≿ on the
set A defined on events E has a state dependent hidden information
utility representation if there exist a function U : A → R unique up to
affine transformations, a function u : F× S → R integrable in its second
argument, and a unique hidden information sigma algebra H such that
U(a) ≥ U(a′) if and only if a ≿ a′ and

U(a) = ∑
E∈ι(a)

∫
E

max
f∈a(E)

w fE dµH|E. (3)

where w fE(H) =
∫

H u( f , s)dµE|H.

In principle, it is also possible to consider the case in which a decision
maker has hidden outside options. However, in this case we generally lose
many uniqueness properties of the utility representations because hidden
subsequent decision problems of knowledge preferences are generally not
unique. We consider representations with both hidden information and
hidden actions an interesting field for further research.

4 Axioms

We assume the usual weak order axiom to guarantee that the decision
maker’s preference is well behaved.

Axiom 1 (Weak Order). ≿ is complete and transitive.

We impose the following variation of Savage (1954)’s sure-thing princi-
ple.

Axiom 2 (Sure-Thing Principle). For all E ∈ E and all a, b, c, d ∈ A,

cEa ≿ cEb ⇐⇒ dEa ≿ dEb. (4)

7



It is noteworthy that in all of the involved acts the decision maker will
be able to distinguish whether event E obtains or not. This is because cEa
is an information act in which the information partition consists of the
information partition of c after intersection with E and the information
partition of a after intersection with Ec.

The Sure-Thing Principle allows us to define a relation ≿E conditional
on an event E: a ≿E b if and only if aEc ≿ bEc for some c. Such preferences
have the interpretation of what the preferences over acts would be in case
the individual is informed that the true state of the world is within E.
These conditional preferences extend naturally to menus as we can define
m ≿E m′ if and only if the conditional information acts a and a′ yielding
m and m′, respectively, on event E fulfill a ≿E a′. Similarly, for subsequent
acts f , g ∈ F, we can define f ≿E g if and only if { f } ≿E {g}.

We focus on a model in which the subsequent acts are valued state-
dependently. In the appendix, we also provide a version in which the
value of outcomes is state-independent and the structure of subsequent
acts is known to the analyst.

We strengthen Savage’s Nontriviality axiom by requiring that subse-
quent acts cannot be indifferent both on a nonnull event and all of its
nonnull subevents.

Axiom 3 (Strong Nontriviality). For all f , g ∈ F and all nonnull events
E ∈ E, if f ∼E g, then for some nonnull event F ⊂ E, f ≻F g.

We naturally do not assume Savage’s Monotonicity and Likelihood
Outcome Independence axioms. Appendix ?? provides these axioms and
characterizes a state-independent representation.

To introduce the continuity properties we assume, we next define what
it means for sequences of events, subsequent acts, menus, and information
acts to converge.

Definition 4 (Convergence of Events). A sequence (Ek) of events converges
in subjective belief to E, denoted Ek ; E, if the following two conditions
hold:

(E1) If F ⊊ E is nonnull, then there exists N such that for all k > N,
F ∩ Ek ̸= ∅.

(E2) If F is nonnull and for each N, there exists k > N such that F ⊊ Ek,
then F ∩ E ̸= ∅.
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The first condition requires that in the limit, the set E should not be too
“large”. On the other hand, the second condition prevents the set E from
being too “small”. Note that our defintion allows a sequence of events
converge to infinitely many different events, but the difference between
each of them is a null event in terms of the agent’s subjective belief. An
example of convergence in subjective belief are monotonically increasing
or monotonically decreasing sequences of sets of states.2

Definition 5 (Convergence of Information Partitions). A sequence (Ik) of
information partitions converges in subjective belief to I, denoted Ik ; I,
if for each Ei ∈ I, there exists a sequence (Ek

i ) such that:

1. Ek
i ∈ Ik ∪ {∅} for all k, and

2. Ek
i ; Ei.

Definition 6 (Convergence of Information Acts). A sequence (ak) of in-
formation acts converges in subjective belief to a, denoted ak ; a, if the
following two conditions hold:

1. ι(ak) ; ι(a).

2. (ak)−1( f ) ; a−1( f ) for all f ∈ F. where (Ek
i ) is the sequence that

converges to Ei.

Equipped with these definitions, we can now state our continuity
axiom:

Axiom 4 (Continuity). If ak ; a, bk ; b, and for all k, ak ≿ bk, then a ≿ b.

Naturally, a decision maker has a nonnegative value of information
when using information to solve a decision problem. We therefore assume:

Axiom 5 (Positive Value of Information). For every menu m and events
E, F,

mEmF ≿E∪F mE∪F

Similarly, additional options are in the worst case of no value and in
the best case provide additional value. Therefore we assume:

Axiom 6 (Positive Value of Flexibility). For all menus m, m′ and every
event E, if m ⊆ m′, then m′ ≿E m.

2See appendix G.
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If the obtained knowledge is of no use for the agent to make her choice
in the second stage, then we assume the value of such knowledge is zero.
In particular, this occurs when the menu is singleton. The following axiom
captures this idea:

Axiom 7 (Instrumental Knowledge Property). For all events E, F ∈ E with
E ∩ F = ∅,

{ f }E∪F ∼E∪F { f }E{g}F.

This effectively allows us to ignore the special structure of the informa-
tion acts whenever the information act only yields singleton menus.

In case the decision maker receives no hidden information before
making the choice from the menu, the decision maker does not care about
flexibility unless it provides a new optimal action to take. This can be
expressed via the following condition.

Definition 7 (Indirect Utility Property). For every event E, every subse-
quent act f and every menu m,

{b} ≿E m =⇒ {b} ∪ m ∼E {b}.

We weaken this condition to allow for decision makers who receive
hidden information before choosing from the menu.

Axiom 8 (Hidden Indirect Utility Property). Let m and n be two menus
and E an event. If m ∪ n ≻E m and m ∪ n ≻E n, then there exists an event
I such that

1. m ∪ n ∼E∩I m,

2. m ∪ n ∼E∩Ic n,

3. m ∪ n ∼E mIn, and

4. for all o ∈ M and all F ∈ E, oI∩Fo ∼F o.

The first two conditions are reminiscent of the usual indirect utility
property; for some subevent E ∩ I the decision maker always chooses from
m and for its relative complement the decision maker chooses from n. The
third condition requires that the decision maker has no gain of value from
being informed about I. The fourth condition requires that the decision
maker never gains any value from being informed about I, irrespective of
the menu offered and other information provided.
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We call the sets I fulfilling the four conditions of Axiom 8 for menus
m and n and any event E the hidden information sets identified by menu
m ∪ n and denote their collection by Hm∪n. We denote by H0 the set of all
hidden identified sets.

5 Axiomatization

In this section, we present our three main representation theorems. To
start out, we characterize an event-dependent evaluation of menus and
information partitions which provides a starting point for our character-
izations. The representation is additively separable in the events of the
information partition that the act provides. The value of each additive
component may contain any of the following: the likelihood the decision
maker attaches to an event, the value of the options given that the event is
known, and the intrinsic value of knowing that the event obtains. In such
a model, it is impossible to disentangle these aspects of the utility of the
decision maker.

Theorem 1. Suppose ≿ satisfies 9. Then the following statements are equivalent:

1. ≿ satisfies Axioms 1, 2, and 4

2. ≿ has an event dependent utility representation unique up to affine trans-
formations.

This representation serves as a starting point for our remaining charac-
terizations. The main difficulty in obtaining this result are the relatively
weak continuity assumptions.

If we in addition assume that the indirect utility property holds, then
one can show that on every information set the decision maker evaluates
a menu by the value of its best alternative.

Proposition 1. Let ≿ fulfill Axiom 9. Then the following statements are equiva-
lent:

1. ≿ satisfies Axioms 1, 2, 4, and Definition 7.

2. ≿ has an event utility representation.

Third, we characterize a representation in which the decision maker
expects to gain some information other than ι(a) provided by the infor-
mation act before making the final decision. We continue to assume that
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outcomes are valued state-independently and that the decision maker
values knowledge about events only instrumentally. However, we weaken
the indirect utility property to allow for knowledge about some events
to have no value because the decision maker already expects to gain this
knowledge anyway.

Theorem 2. Let ≿ fulfill Axiom 9. Then the following statements are equivalent:

1. ≿ satisfies Axioms 1,2, 4 and 5-8.

2. ≿ has a hidden information utility representation.

The proof roughly proceeds as follows. We first obtain an event depen-
dent utility representation from Theorem 1. The additive components in
turn are additively across hidden information sets. Thus, if we were to
provide additional information that the decision maker anyways expects
to gain, there is no increase in value and thus the additive components are
superadditive across events. Together with the positive value of knowl-
edge axiom, requiring the value of knowledge to be subadditive, it follows
then that for hidden information sets the additive components are additive.
Since the structure of hidden information sets is a sigma algebra, we obtain
a representation of the value of a menu in the form of an integral. We
finally show that the representation of the value of a menu takes the form
of an expected utility of subsequent acts.

6 Comparative Statics

We can compare decision makers by their preference for information, their
preference for flexibility.

Definition 8 (Comparative Preference for Information). ≿1 exhibits more
preference for information than ≿2 if for all E and all α, β, m = {αEβ, βEα}
m ∼1 mEm implies m ∼2 mEm.

Thus, decision maker 1 has a stronger preference for information than
decision maker 2 if every hidden information set for decision maker 1 is
also a hidden information set for decision maker 2.

Note that stronger definitions will frequently yield an empty compari-
son relation. For example, suppose we assume that for an arbitrary menu
the decision maker 1 strictly prefers to refine an information partition
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whenever decision maker 2 strictly prefers to refine an information parti-
tion. It is straightforward to show that even if both decision makers have
the same expected utility preferences over singleton menus and decision
maker 2’s hidden information refines that of decision maker 1, there are
menus where the combination of decision maker 2’s hidden information
with a partition I is beneficial but the combination of decision maker 1’s
hidden information with I is of no value.

Definition 9 (Comparative Preference for Flexibility). ≿1 exhibits more
preference for flexibility than ≿2 if for all b and all m it holds that mS ≿2
{b}S ⇒ mS ≿1 {b}S.

The definition requires that if decision maker 2 prefers a menu to an
act, then also decision maker 1 prefers the menu. Generally, two decision
maker will only be comparable in their preference for flexibility as long
as they have identical preferences over acts. For some menus, an option
may only be valuable if one has some information. If decision maker 1

has this information but decision maker 2 does not, then for a properly
chosen act, decision maker 1 will prefer the menu to the act but decision
maker 2 does not.

Theorem 3. Let ≿1 and ≿2 have hidden information utility representations.
Then the following statements are equivalent.

1. u1 is an affine transformation of u2 and µ1 = µ2. The hidden information
partitions H1 and H2 fulfill H1 ≥ H2.

2. ≿2 exhibits more preference for information than ≿1 and both decision
makers have identical preferences over singleton acts.

3. ≿1 exhibits more preference for flexibility than ≿2.

4. For some γ, β ∈ X, γ ≻1 β, γ ≻2 β and for all m, D(E, m) =
v2(E,m)

v2(S,γ)−v2(S,β) is subadditive.

Proof. 1 ⇒ 2: Since both decision makers have up to an affine trans-
formation identical expected utility representations of preferences over
singletons, their preferences on singleton acts coincide. Since H1 ≥ H2,
every hidden information set of decision maker 2 is also a hidden infor-
mation set of decision maker 1.

2 ⇒ 3: Since both decision makers have identical preferences over
singleton acts, it is straightforward to show that their preferences over
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subsequent acts coincide conditional on every event E. For simplicity,
denote the expected utility preferences over subsequent acts conditional
on an event F as EU1(·|F) = EU2(·|F). Suppose now that decision maker
2 prefers a menu to an act but decision maker 1 does not. Since decision
maker 1’s information partition refines that of decision maker 2, for every
H ∈ H2 ∩ E, maxb∈m(H) EU2(b|H) ≤ ∑H′∈H1:H′⊆H maxb∈m(H) EU1(b|H′),
a contradiction.

3 ⇒ 1: If the expected utility representations do not coincide up to
an affine transformation, then for two subsequent acts such that b ≻1 b′

and b′ ≻1 b, we can by continuity find an intermediate act b′′ such that
b ≻1 b′′ ≻1 b′ and b′ ≻2 b′′ ≻2 b, yielding a contradiction to decision
maker 1 having more preference for flexibility for the trivial menu {b′′}.
Suppose now that H1 ̸≥ H2. Then for some H ∈ H2, H1 does not contain
H. The menu {γHβ, βHγ} now offers a higher utility to decision maker 2

than to decision maker 1 and we can find an act such that decision maker
2 prefers the menu to the act but decision maker 1 does not.

We can see that comparative preference for flexibility automatically
implies that expected utility preferences are identical. This is not the case
for comparative information preferences. Thus, in practice it may be often
more desirable to identify hidden information using our definition of
hidden information sets.

We can also compare preference for information given a fixed menu.
Suppose the value of information is higher for DM1 than for DM2 for all
information sets. This value can be measured by equivalent improvements
in a comparable act. A consistent value requires the EU preferences of
both DMs to be identical. Clearly, DM1 cannot have more decision relevant
information than DM2. Thus, for every two states s and s′ if decision
maker 1 can distinguish between these two states, then there is no value
for decision maker 2 to distinguish between these two states. Thus, the
best action must already be chosen on these states by DM 2 without any
further information. Moreover, every information that is valuable to DM2

must also be valuable to DM1. When we inform DM2 about event E and
DM2 chooses a better option on E, then DM1 also chooses a better option
on E and gains at least as much in doing so.
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7 Elicitation of Hidden Information

In many economic applications, the subsequent acts are not objectively
given. For example, if the subsequent choice consists of stocks, then we
do not know how the value of the stock relates to each event affecting the
stock. Even if we were to incorporate the price of the stock into the state
space, we would need to ask the individual many hypothetical questions
to properly identify beliefs and utilities. It turns out that allowing for the
value of the stock to be state dependent still permits partly eliciting the
hidden information that the decision maker expects to receive prior to
choosing from the menu.

We assume throughout this section that preferences over outcomes
are asymmetric in every state which greatly simplifies the exposition. To
identify the hidden information, we propose an approach that uses a
binary menu m = {b1, b2}. First, from the decision-maker’s preferences
over information acts, we can obtain a partition {E1, E2} such that b1 ≻ b2

in and only in E1. We then pick F1 ⊆ E1 and F2 ⊆ E2, and let F = F1 ∪ F2.
In the absence of the hidden information, we would have

v(m, F) < v(m, F1) + v(m, F2)

because it is valuable for the decision maker to know whether to choose b1

or b2. However, if the decision-maker knows F1 and F2 due to her hidden
information, then we instead have equality for the above inequality. We
therefore gradually change F1 and F2 to recover the information sets which
obtain equality in the expression above, a process which we describe in
more detail below. Finally, repeating the above steps with all binary menus
we are able to recover a hidden information partition P2 based on binary
menus.

Our approach has its limitations. If the decision-maker’s hidden in-
formation G is a subset of some E ∈ P2, then this approach will fail to
identify G. This may be the case if there is no pair of subsequent acts for
which it would be useful to know whether G obtains. We conjecture that
there is no approach to identify such G. On the other hand, if we can
successfully identify a hidden information set G, then G must intersect
some E ∈ P2 and therefore we will call G a border-crossing information
set if for some acts b, b′ it intersects both the event on which b and on
which b′ is optimal.

We can recover a complete binary relation over subsequent acts in each
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state.3 Since we assume transitivity and a strict order of singletons, the
binary relation in each state is a linear order and hence has a unique
maximal element (if exists). States with the same weak order have the
same maximal element while states with the same maximal element may
not have the same weak order.

E
C

B B
C

Ec C
B B

C

I Ic

E
C

B B
C

Ec C
B B

C

I Ic

E

Ec

The left table is what the analyst knows given the decision-maker’s
report. E and Ec are the information that the analyst can offer through
an information act. The region marked by B is the collection of states in
which the decision-maker prefers the subsequent act b over c and vice
versa. The right table is what the decision-maker has in mind. E and Ec

are the information given by the analyst while I and Ic are the hidden
information.

If the utility of (E : {b, c}, Ec : {b}) is higher than both (E : {b}, Ec :
{b}) and (E : {c}, Ec : {b}), then the analyst can infer that there exists
hidden information. That is, the decision-maker is able to choose different
subsequent acts due to her hidden information. Without loss of generality,
assume the decision-maker chooses b in E ∩ I and c in E ∩ Ic, as illustrated
below.

I Ic

E b c

Ec b b

Now we would like to identify the region B in the upper right block,
i.e., B ∩ E ∩ Ic. Our method is as follows. We pick a small subset ε ⊆ B ∩ E
and offer another information act (E − ε : {b, c}, (E − ε)c : {b}). Note that
by removing ε from E, the relative value of b over c is lower in the event

3Note that whether the decision-maker actually chooses subsequent act b or c is not
observable until the second stage, but this does not affect our method as it only relies on
the value v which is identifiable from first stage preferences.
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E − ε than in E. We then compare the marginal change of v. Suppose first
ε ⊆ B ∩ E ∩ Ic. Since removing ε from E only decreases the value of b in
E ∩ Ic, the decision-maker will still choose c in E ∩ Ic. Thus,

v
(
{b, c}, E \ ε

)
= v

(
{b}, E ∩ I

)
+ v
(
{c}, E ∩ Ic \ ε

)
(5)

= v
(
{b}, E ∩ I

)
+ v
(
{c}, E ∩ Ic

)
− v
(
{c}, ε

)
(6)

= v
(
{b, c}, E

)
− v
(
{c}, ε

)
. (7)

Suppose instead ε ⊆ B ∩ E ∩ I. Since the decision-maker prefers b over c
in E ∩ I, removing ε from E ∩ I may cause preference reversal. Thus,

v
(
{b, c}, E \ ε

)
= v

(
{b, c}, E ∩ I \ ε

)
+ v
(
{c}, E ∩ Ic

)
(8)

=

v
(
{b, c}, E

)
− v
(
{b}, ε

)
, if b is chosen in E ∩ I \ ε,

v
(
{c}, E \ ε

)
, if c is chosen in E ∩ I \ ε.

(9)

If ε is sufficiently large, then v
(
{b, c}, E \ ε

)
is equal to v

(
{c}, E \ ε

)
, allow-

ing us to distinguish the case ε ⊆ E ∩ I from ε ⊆ E ∩ Ic.
The following proposition shows that

Proposition 2. Assume Axiom 7 and 8 hold. Suppose ≿ can be represented by
∑E maxb∈m vE({b}). Let b and c be two subsequent acts. Define

B =
{

s ∈ S : b(s) ≻ c(s)
}

and C =
{

s ∈ S : c(s) ≻ b(s)
}

.

Suppose

1. B ∪ C = S,

2. {b, c}E{b} ≻ {b}E{b} and {b, c}E{b} ≻ {c}E{b}.

Then there exists I ∈ H such that

{b, c} ∼E∩I {b} and {b, c} ∼E∩Ic {c}.

and for any nonnull ε ⊆ B ∩ E, we have that ε ∩ I is null if and only if

v
(
{b, c}, E \ ε

)
= v

(
{b, c}, E

)
− v
(
{c}, ε

)
. (10)

Proof. We shall prove this propostition in two steps.
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Step 1. Show v
(
{b, c}, E

)
̸= v

(
{c}, E

)
and v

(
{b}, ε

)
̸= v

(
{c}, ε

)
.

Since {b, c}E{b} ≻ {c}E{b}, we have v
(
{b, c}, E

)
> v

(
{c}, E

)
. The

second inequality directly follows from the assumption that ε is a
non-null subset of B ∩ E.

Step 2. Show if ε ⊊ B ∩ E ∩ Ic, then the desired equality does not hold.

Let ε = ε′ ∪ ε′′, where ε′ = ε ∩ I and ε′′ = ε ∩ Ic. Then

v
(
{b, c}, E \ ε

)
= v

(
{b, c}, E ∩ I \ ε′

)
+ v
(
{b, c}, E ∩ Ic \ ε′′

)
=

{
v
(
{b, c}, E ∩ I

)
− v
(
{b}, ε′

)
v
(
{c}, E ∩ I

)
− v
(
{c}, ε′

) }
+ v
(
{c}, E ∩ Ic

)
− v
(
{c}, ε′′

)
=

{
v
(
{b, c}, E

)
− v
(
{b}, ε′

)
− v
(
{c}, ε′′

)
if b is chosen in E ∩ I \ ε′;

v
(
{c}, E

)
− v
(
{c}, ε

)
if c is chosen in E ∩ I \ ε′.

Neither of the expressions is equal to v
(
{b, c}, E

)
− v
(
{c}, ε

)
.

Similarly, we can identify the region C in the upper left block, i.e.,
C ∩ (E ∩ I). Specifically,

C ∩ (E ∩ I) =
⋃ {

ε ⊆ C ∩ E | v({b, c}, E − ε) = v({b, c}, E)− v({b}, ε)
}

.

Finally, we can use the above sets to recover E ∩ I and E ∩ Ic.
It is of interest that whether one can get a different result if he/she

considers menus consisting of more than two subsequent acts. However,
with the following lemma we argue that it is sufficient to focus on all
binary menus to identify the hidden information partition. To state the
result, we generalize the idea of P2: Given a set of subsequent acts
{b1, b2, . . . , bn}, let Pi denote the coarsest partition that is finer than all
hidden information partitions generated by a menu consisting of any
combination of i subsequent acts.

Lemma 1. P2 is finer than Pi for i = 3, 4, . . . , n.

Proof. This follows straightforward from the fact that if a hidden infor-
mation set is not identifiable from the binary choice between b and c, the
binary choice between c and d, and the binary choice between b and d, then
it cannot be identified from the choice between {b, c, d} as the partition of
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the state space on which b, c, d are optimal from {b, c, d} is a coarsening of
the common refinement of the partitions on which b, c are optimal from
{b, c}, c, d are optimal from {c, d}, and b, d are optimal from {b, d}. Since
only border-crossing information sets are identifiable, it follows that P2
refines P3. A similar argument holds for choices from larger menus.

From the above lemma follows that P2 contains all decision-relevant
hidden information of the decision maker. It follows that Proposition 2

uniquely characterizes all decision-relevant hidden information.

8 Conclusion

In this paper we have analyzed preference for flexibility and knowledge
with an objective state space. This is in contrast to previous analyses
in which the uncertainty about the state space inducing the preference
for flexibility is allowed to be completely unrelated to the objective state
space. In our model, from information preferences we can identify which
information the decision maker expects to gain that induces a preference
for flexibility. In a state independent model this allows for separation of
utilities, beliefs, and information sigma algebras. Perhaps more surpris-
ingly even in a state-dependent model the hidden information that the
decision maker expects to gain is identifiable and only requires the use of
binary menus.
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A Further Decision Models

We introduce several decision models capturing various aspects of behavior
when agents can choose between acts that may offer both flexibility and
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knowledge in addition to uncertain outcomes.
In the previous model, we assume that the decision-maker can only

receive information through information acts with an information partition
known to the analyst. Here, we instead assume that the decision-maker
gathers her own information prior to the second stage. This hidden in-
formation is unknown to the analyst and hence the decision-maker’s
preferences violate the indirect utility property from the analyst’s per-
spective. For example, suppose that the decision-maker has the hidden
information (partition) {E1, E2} and assigns equal probability to these
events. Assume her utility of b1 and b2 are 20 and 0 respectively if E1

occurs while 0 and 10 if E2 occurs. Then the decision-maker will report

{b1}S ≻ {b2}S and {b1, b2}S ≻ {b1}S,

which violates the indirect utility property from the analyst’s perspective.
The following representation allows for almost arbitrary knowledge and
flexibility preferences. In particular, the value of knowing an event may
depend on subsequent acts available and the value of the final outcomes
may be state-dependent.

Definition 10 (Event Dependent Indirect Utility). ≿ on the set A defined
on events E has an event dependent indirect utility representation if there
exist functions U : A → R and v : B× E → R such that U(a) ≥ U(a′) if
and only if a ≿ a′ and

U(a) = ∑
E∈ι(a)

max
b∈a(E)

v(b, E). (11)

Second, we characterize a representation in which the value of out-
comes are state-independent but the value of subsequent acts may depend
on the event that obtains. We also exclude any intrinsic preference for
knowing whether an event obtains. In this case, beliefs are identifiable
and can be represented by a quantitative probability.

If the decision maker has no intrinsic value of knowledge, the decision
maker may still prefer to have more knowledge over which states obtains
in order to make a better choice from the available menu. In this case, the
decision maker has an expecte indirect utility.

Definition 11 (Expected Indirect Utility). ≿ on the set A defined on events
E has an expected indirect utility representation if there exist functions
U : A → R and u : X → R unique up to affine transformations, and a
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unique probability measure µ : E → R such that U(a) ≥ U(a′) if and only
if a ≿ a′ and

U(a) = ∑
E∈ι(a)

µ(E) max
b∈a(E)

∫
s∈E

u
(
b(s)

)
dµ|E. (12)

The crucial difference to the expected indirect utility of Nehring (1999)
is that in our model the information that the decision maker expects to
receive is objectively given by ι(a). In our last model, we allow for both
subjective information and objective information to play a role. However,
the subjective information remains embedded in our objective state space.

We define the preferences of a decision maker who is consequentialist
and expects to receive information before choosing the subsequent acts:

Definition 12 (Hidden Information Utility). ≿ on the set A defined on
events E has a hidden information utility representation if there exist
functions U : A → R, u : X → R unique up to affine transformations, a
unique probability measure µ : E → R, and a hidden information sigma
algebra H such that U(a) ≥ U(a′) if and only if a ≿ a′ and

U(a) = ∑
E∈ι(a)

µ(E)
∫

E
max

b∈a(E)
wbE dµH|E. (13)

where wbE(H) =
∫

H u ◦ bE dµE|H.

We therefore have that in this representation the decision maker first
forms an expectation across information sets E provided by an information
act. Then, on every information set E the decision maker maximizes across
the menu a(E) using the full information from H to condition the chosen
subsequent acts. The maximization objective in this process is given by an
expected utility vb. It is noteworthy that maxb∈a(E) vb is always measurable
since subsequent acts are simple.

B State-Independent Case

An event E is nonnull if for some outcomes α and β, we have {α}E{β} ≻
{β}E{β}. An event is null if it is not nonnull.

Let X be a set of final outcomes. We shall use greek letters to denote
generic elements in X. A subsequent act b is an E-measurable function
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b : S → X. If b is a constant function, then we say b is a constant subsequent
act. The set of all subsequent acts with finite support is denoted FS.

The next axiom is again a standard axiom in the Savage framework.

Axiom 9 (Nontriviality). There are α, β ∈ X such that α ≻ β.

Some additional notation will be convenient when menus have this
additional structure. If m only consists of constant subsequent acts, then
m is called a constant menu. Given a subsequent act b, it is useful to
consider b restricted on an event E. A conditional subsequent act bE is
the function bE : E → X such that bE(s) = b(s) for all s ∈ E. Similarly,
mE := {bE : b ∈ m} is called a conditional menu. The set of all menus
restriced on E is denoted ME and the collection of all conditional menus
is denoted M, i.e., M =

⋃
E∈EME.

Definition 13 (Convergence of Subsequent Acts). A sequence (bk) of
subsequent acts converges in subjective belief to b, denoted bk ; b, if for
all α ∈ supp(b), (bk)−1(α) ; b−1(α).

Thus, a sequence of subsequent acts converges to an act if the sequence
of events on which an outcome is acquired converges to the event in which
the outcome arises on the act the sequence converges to.

Definition 14 (Convergence of Menus). A sequence (mk) of menus con-
verges in subjective belief to m, denoted mk ; m, if the following two
conditions hold:

1. For all subsequent acts b ∈ m, there exists a sequence (bk) such that
bk ∈ mk for all k and bk ; b.

2. If there exists a sequence (bi) such that bi ∈ mki for all i, where mki

is a subsequence of mk and bi ; b, then b ∈ m.

A menu of subsequent acts converges if the set of acts in the menu
is not too large and not too small. If we can pick for every menu in the
sequence a subsequent act such that this sequence of subsequent acts
converges, then the subsequent act that the sequence converges to must
be in the menu. On the converse, for every act in the menu, we need to be
able to find a convergent subsequence of acts by picking from every menu
in the sequence of menus.

Definition 15 (Convergence of Information Acts). A sequence (ak) of
information acts converges in subjective belief to a, denoted ak ; a, if the
following two conditions hold:
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1. ι(ak) ; ι(a).

2. ak(Ek
i ) ; a(Ei) for each Ei ∈ ι(a), where (Ek

i ) is the sequence that
converges to Ei.

For the state-independent model, we impose the following monotonic-
ity and likelihood outcome independence axioms.

Axiom 10 (Monotonicity). For all nonnull E ∈ E, all constant menus m, n
and all f ∈ A,

m ≿ n ⇐⇒ mE f ≿ nE f . (14)

Monotonicity captures that if a menu of constant acts is preferred to an-
other menu of constant acts, then it is also preferred conditionally on any
event E. This means that both the final outcomes and the flexibility of hav-
ing the choice between different outcomes are valued state-independently.
By comparing singleton constant menus, we can obtain a preference rela-
tion over outcomes. For notational convenience, we simply denote α ≿ β

to express that outcome α is at least as good as β.

Axiom 11 (Likelihood Outcome Independence). For all events E, F ∈ E

and all constant menus m, n, m′, n′ with m ≻ n and m′ ≻ n′,

mEn ≿ mFn ⇐⇒ m′
En′ ≿ m′

Fn′. (15)

Likelihood outcome independence guarantees the existence of a likeli-
hood relation ≿∗ on the set of events E. Event E is defined to be at least as
likely as F, denoted by E ≿∗ F, if {α}E{β} ≿ {α}F{β} for some outcomes
α, β ∈ X such that α ≻ β.

Likelihood outcome independence only applies to singleton menus. It
is thus formulated here in the same form as in Savage (1954) and does not
make use of the additional menu structure.4

Axioms 1-6 together with the instrumental knowledge property guar-
antee that for singleton menus, the axioms of Savage (1954) apply and
an expected utility representation exists. This is because combining the
instrumental knowledge property with the monotonicity axiom, we obtain

{αEb} ≿ {βEb}
⇔ {α}E{b} ≿ {β}E{b}
⇔ {α} ≿ {β}.

4However, the indirect utility property over menus together with likelihood outcome
independence guarantee that likelihood judgments are also consistent when elicited
using menus of constant subsequent acts.
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Axiom 12 (Consistency of Hidden Knowledge). Let α, β ∈ X with {α} ≻
{β}. If an event I and the menu n = {αI β, β Iα} satisfy n ∼ nIn, then for
all E ∈ E and all menus m, m ∼E mIm.

Consistency of hidden knowledge ensures that if a decision maker
does not value information whether I or Ic occurs for a menu in which
this information should be useful, then the decision maker never attaches
value to this information.

Definition 16 (Hidden Identified Set). An event I is called a hidden
identified set if I satisfies for some {α} ≻ {β} and m = {αI β, β Iα},
m ∼ mIm.

Axiom 13 (Hidden Indirect Utility Property). Let m and n be two menus.
If m ∪ n ≻E m and m ∪ n ≻E n, then there exist a hidden identified set I
such that m ∪ n ∼E∩I m and m ∪ n ∼E∩Ic n.

According to the hidden indirect utility property, whenever a decision
maker has a strict preference for flexibility on event E for choosing from
menu m ∪ n rather than either of the two menus, then there exists some
information that the decision maker expects to receive and this information
will make a choice from m optimal in some states of the world and a choice
from n optimal in other states of the world. The hidden indirect utility
property prevents preference for flexibility to be due to a subjective state
space. Thus, the objective state space captures all uncertainty relevant for
making a choice from any menu.

Next, we provide a representation in which the outcomes of acts
are evaluated state-independently and in which probabilistic beliefs are
identified. In this theorem we assume both the indirect utility property for
subsequent acts and the instrumental knowledge property to obtain that
the decision maker maximizes a utility over subsequent conditional acts at
every information set. The utility over subsequent acts may or may not be
consistent with expected utility maximization and may capture a variety
of behavioral biases. While we focus on expected utility maximization in
this paper, this representation may be a useful starting point for decision
models that capture a greater variety of behavior.

Theorem 4. The following statements are equivalent:

1. ≿ satisfy Axioms 1-6, Axiom ??, and Axiom 7.

2. ≿ has an indirect expected utility representation.
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The proof in appendix F starts by showing that ≿∗ is a qualitative
probability and by the richness of states we obtain a representation of
this relation by a unique quantitative probability. Factoring out this
quantitative probability from the state-dependent representation obtained
in Theorem ??, we can then use the indirect utility property to obtain
utility maximization across subsequent acts. This in turn allows us to
express the utility of every information act as an information act that
yields a singleton (the optimal subsequent act) on every information set.
Using the instrumental knowledge property we can additively decompose
the utility of a subsequent act given an event E into the outcomes. This
is straightforward to see by observing that on the set of information acts
only yielding singleton menus our axioms imply the axioms of Savage
(1954).

C Proof of Theorem 1

We proceed in three major steps. First we prove that the order topology
on conditional acts is connected. This allows us to use standard additive
representation theorems to obtain for every fixed information partition
a utility that is additively separable across elements of the information
partition. Finally, we show that for every event the additive component is
independent of the remainder of the partition.

Definition 17.

1. Let E△F denote the symmetric difference of two sets E and F, i.e.,

E△F := (E \ F) ∪ (F \ E).

2. Let µ̂ be an atomless probability measure on E satisfying µ̂(E) = 0 if
and only if E is null.

3. Let Σ denote a subset of E satisfying the following three conditions:
An issue here. Given an ideal, is there always exist a consistent
probability measure? How to say E is atomless without specifying
the measure or qualitative probability?

(a) ∅, S ∈ Σ;

(b) for each p ∈ [0, 1], exactly one F ∈ Σ satisfies µ̂(F) = p;
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(c) for any two events Fi, Fj ∈ Σ, either Fi ⊆ Fj or Fj ⊆ Fi.

4. Given two information acts f , g and two events F, G ∈ Σ with F ⊆ G,
define

I( f , g, F, G) := { fEg : E ∈ Σ and F ⊆ E ⊆ G}.

If F = ∅ and G = S, then F and G will be dropped and we simply
write I( f , g).

Lemma 2. Assume Axiom 1, 2, and 4 hold. Let E ∈ E be an event. Let f ,
g be two information acts and F, G ∈ Σ be two events. Then I( f , g, F, G) is
connected if endowed with the order topology of ≿E.

Proof. For notational convenience, denote I( f , g, F, G) by I . Consider the
set

I :=
{

µ̂(H) : H ∈ Σ, F ⊆ H ⊆ G, and a ≿E fHg
}

,

where a ∈ I . Pick a convergent sequence (zk) in this set with lim zk = z∗.
Let Hk and H∗ denote the events in Σ satisfying µ̂(Hk) = zk and µ̂(H∗) =
z∗. We claim that Hk ; H∗. Pick a nonnull event J ⊆ H∗ and assume by
contradiction that (E1) does not hold. Then there exists a subsequence
(Hp) such that J ∩ Hp = ∅ for all p, which also implies Hp ⊆ H∗. Hence,
µ̂(J) + µ̂(Hp) ≤ µ̂(H∗), a contradiction. Assume by contradiction that (E2)
does not hold. Construct the subsequence (Hq) accordingly, i.e., there
exists nonnull event K such that K ⊊ Hq for all q and K ∩ H∗ = ∅. This
implies H ⊆ Hq and µ̂(K) + µ̂(H∗) ≤ µ̂(Hq) for all q, a contradiction.
Thus, Hk ; H∗.

Pick h ∈ A. Observe that ( fHk g)Eh ; ( fH∗g)Eh. Since a ≿E fHk g for all
k, we have aEh ≿ ( fHk g)Eh for all k. By Axioms 4, aEh ≿ ( fH∗g)Eh. That
is, z∗ = µ̂(H∗) ∈ I. Hence, I is closed. Similarly,{

µ̂(H) : H ∈ Σ, F ⊆ H ⊆ G, and fHg ≿E a
}

is closed for all a ∈ I . By taking complement and intersection, the
following three types of sets are open for all â, ǎ ∈ I :

1.
{

µ̂(H) : H ∈ Σ, F ⊆ H ⊆ G, and â ≻E fHg
}

;

2.
{

µ̂(H) : H ∈ Σ, F ⊆ H ⊆ G, and fHg ≻E ǎ
}

; and

3.
{

µ̂(H) : H ∈ Σ, F ⊆ H ⊆ G, and â ≻E fHg ≻E ǎ
}

.
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Assume by contradiction that I is not connected. Then there exist two
nonempty open sets U, V such that U ∩ V = ∅ and U ∪ V = I . Note that{

h ∈ I : â ≻E h
}

,
{

h ∈ I : h ≻E ǎ
}

, and
{

h ∈ I : â ≻E h ≻E ǎ
}

for all â, ǎ ∈ I form a base for the order topology of ≿E. Hence, both U
and V are unions of such open intervals ard rays. As have already shown,
openness is preserved for those three types of sets if representing in the
form of µ̂(H). Moreover, any union of open sets is open. Thus,{

µ̂(H) : fHg ∈ U
}

and
{

µ̂(H) : fHg ∈ V
}

are open and nonempty. These two sets form a partiton of [µ̂(F), µ̂(G)],
contradicting to the fact that [µ̂(F), µ̂(G)] is connected.

Lemma 3. Assume Axiom 1, 2, and 4 hold. Let E ∈ E be an event. The set A is
connected if endowed with the order topology of ≿E.

Proof. If E is null, then A is topologically a point and hence is connected.
From now on, assume E is nonnull.

To show A is connected, it is equivalent to show A, endowed with the
order topology of ≿E, is a linear continuum. That is, we shall prove:

1. For any two conditional acts f , g ∈ A with f ≻E g, there exists h ∈ A

such that f ≻E h ≻E g.

2. A has the least upper bound property with respect to ≿E.

For the first statement, note that I( f , g) is connected and hence there must
exist h ∈ I( f , g) ⊆ A such that f ≻E h ≻E g.

For the second statement, take a bounded subset A of A. Pick f ∈ A

and let ĥ be a bound. Denote I( f , ĥ) by I . Since I is connected, for each
a ∈ A satisfying a ≿E f , there exists ga ∈ I such that ga ∼E a. Otherwise,
{h ∈ I : h ≻E a} and {h ∈ I : a ≻E h} are two nonempty open sets which
together form a partition of I , a contradiction. Let B be the collection of
all corresponding ga. Then B is a nonempty subset of I and is bounded
by ĥ ∈ I . Since I is a linear continuum, B has a least upper bound g∗. We
claim that g∗ is also a least upper bound of A. First, for each a ∈ A, if
f ≿E a, then g∗ ≿E f ≿E a. If a ≿E f , then g∗ ≿E ga ∼E a. Hence, g∗ is an
upper bound of A. Next, suppose there exists another upper bound h of A
but g∗ ≻E h. Clearly, ĥ ≿E g∗ ≻E h ≿E f . Hence, there exists gh ∈ I such
that gh ∼E h. Since g∗ is a least upper bound of B and g∗ ≻E gh, there
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must exist ga ∈ B such that ga ≻E gh. By construction, there exists a ∈ A
such that a ∼E ga ≻E gh ∼E h, a contradictin.

Lemma 4. Assume Axiom 1, 2, and 4 hold. ≿ is continuous with respect to the
product topology.

Proof. (sketch) Show convergence in the product topology (of ≿E and ≿F)
implies convergence in the order topology of ≿G, where G = E ∪ F. Why
does this work? Continuity means that the weak upper contour set is

closed with respect to the product topology. If f n ≿ g and f n PT−→ f , then
f ≿ g, which is consistent with convergence in the order topology of ≿G.
Alternatively, we need to show the product topology is finer than the order
topology of ≿G since every strict upper contour set (open with respect to
the order topology) should be open with respect to the product topology.

Assume by contradiction that ( f k
E f k

F f k) does not converge in the order
topology of ≿G to fE fF f . Then there exists a subsequence ( f p

E f p
F f p) and

two information acts â, ǎ such that either f p
E f p

F f p ≿G â ≻G fE fF f for all p,
or fE fF f ≻G ǎ ≿G f p

E f p
F f p for all p. Without loss of generality, assume the

former is the case.
For notational convenience, denote fE fF f by fEF and treat other in-

dexed information acts similarly. Since f p
EF

PT−−→
E×F

fEF, we have f p
EF

OT−→
E

fEF

and f p
EF

OT−→
F

fEF. Consider f p
EF

OT−→
E

fEF first. Pick a monotone subsequence

( f q
EF) of ( f p

EF) with respect to ≿E. Let

µ(H) = inf{µ(H′) : H′ ∈ Σ and ( f 1
EF)H′( fEF) ∼E fEF}.

Hence, there exists a decreasing sequence (Hk) ⊆ Σ such that ( f 1
EF)Hk( fEF) ∼E

fEF for all k and µ(Hk) → µ(H). By Axiom 4, ( f 1
EF)H( fEF) ∼E fEF. For

each q > 1, find gq ∈ I( f 1
EF, fEF, Hq−1, H) such that gq ∼E f q

EF, where
Hq−1 satisfies gq−1 = ( f 1

EF)Hq−1 H. Pick a monotone subsequence ( f r
EF) of

( f q
EF) with respect to ≿F. Let

µ(K) = inf{µ(K′) : K′ ∈ Σ and ( f 1
EF)K′( fEF) ∼F fEF}

and find hr ∈ I( f r−1
EF , fEF, K) such that hr ∼F f r

EF.
By Axiom 2, for all r

gr
Ehr

F f r ∼ gr
E f r

F f r ∼ f r
E f r

F f r.

28



Hence, gr
Ehr

F ∼G f r
E f r

F ≿G â.
Since gr

Ehr
F ; gEhF ≿G fE fF, by Axiom 4,

fE fF ∼G gEhF ≿G â ≻G fE fF,

a contradiction.

Definition 18. Given an information partition P of S, the collection of all
information acts that have the same information partition as P is denoted
by A(P). Namely,

A(P) =
{

a ∈ A : ι(a) = P
}

.

Lemma 5. Fix a partition P such that the number of nonnull events is at least
three. Let ≿ be restricted to the set of acts a with an information partition ι(a) at
least as fine as P . Assume Axiom 1, 2, and 4 hold. Then ≿ has a representation

U(a) = ∑
E∈P

vE(aE;P).

Moreover, vE is continuous and is unique up to eventwise jointly positive linear
transformations and eventwise separate additive transformations.

Proof. We have already shown that the set of conditional acts given events
is connected. By continuity, the sure-thing principle and theorem III.4.1 in
Wakker (1989) the result follows.

The last step is to show that the representation is partition independent.
Consider any partition P and a refinement P ′. Notice that the additive
representation across P ′ holds on a subset of the acts for which we have
an additive representation across P . On this subset, it follows from
the uniqueness properties of both representations, that these are affine
transformations of another. Without loss of generality, assume that this
is the identity transformation. Thus, for any E1, . . . , EK ∈ P ′ such that
their union is E ∈ P , we have that ∑k vEk(aEk ,P ′) = vE(aE,P). In a
similar manner, it can be shown that for any two partitions P and P ′

containing event E, we can ensure vE(·,P) = vE(·,P ′). We therefore
obtain a representation ∑E∈ι(a) vE(a(E)).

The uniqueness properties follow from the uniqueness properties of the
additive representations which are unique up to joint linear and separate
additive representations. However, the additive transformations η : E → R

are restricted to fulfill vE(aE) + η(E) + vF(aF) + η(F) = vE∪F(aE) + η(E ∪
F) and thus η must be an additive set function.
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D Proof of Proposition ??

Proof. Necessity of the axioms is straightforward. To prove sufficiency, we
first define the optimal choice from m.

Definition 19. Given an arbitrarily enumerated menu m = { f 1, . . . , f n}
and an event E f i = max≿E

m if f i ∈ m and { f i} ≿E { f j} for all f j ∈ m. If
there are more than one element satisfying the condition, then we pick the
one with the greatest index number.

Next, we provide a lemma that shows that every menu is equally
preferred as its best element.

Lemma 6. If Axiom ?? holds, then for any menu m, m ∼E max≿ m.

Proof. Let m = { f1, . . . , fk} be enumerated such that fi ≿E f j if i ≥ j.
Then by the indirect utility property, f2 ∼E { f1, f2}. Moreover, if fi ∼
{ f1, . . . , fi}, then since fi+1 ≿E fi, by transitivity and the indirect utility
property fi+1 ∼E { f1, . . . , fi+1}. By induction follows that max≿E

m =
fk ∼E m.

Finally, we prove sufficiency. Starting from an additive representa-
tion across information sets, for any event E ∈ ι(a), by Lemma 6, m ∼E
max≿E

m and by Axiom 2 v(E, m) = v(E, {max≿E
m}) = max f ∈ mv(E, { f }).

E Proof of Theorem ??

Before we state the main characterization result, we make two key obser-
vations that are crucial for recovering an information sigma algebra for
the hidden information.

Lemma 7. Let ≿ be represented by U(a) = ∑E∈ι(a) v(a(E), E) with v(m, E) =
v(m′, E) whenever m and m′ agree on E and fulfill Axiom 12. If I and J are
hidden identified sets, then I ∩ J is also a hidden identified set.

Proof. Since I and J are hidden identified sets, we have

v(m, I) + v(m, Ic) = v(m, S) = v(m, J) + v(m, Jc).
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Let m = {αI∩J β I∩Jcγ, β I∩JαI∩Jcγ}. Then

v(m, I) = v({αI∩J β, β I∩Jα}, I)
v(m, Ic) = v({γ}, Ic) = v({γ}, Ic ∩ J) + v({γ}, Ic ∩ Jc)
v(m, J) = v({α, β}, I ∩ J) + v({γ}, Ic ∩ J)

v(m, Jc) = v({β, α}, I ∩ Jc) + v({γ}, Ic ∩ Jc).

Hence,

v({αI∩J β, β I∩Jα}, I) = v(m, I) = v(m, J) + v(m, Jc)− v(m, Ic)
= v({α, β}, I ∩ J) + v({β, α}, I ∩ Jc).

Finally,

v({αI∩J β, β I∩Jα}, S) = v({αI∩J β, β I∩Jα}, I) + v({αI∩J β, β I∩Jα}, Ic)
= v({α, β}, I ∩ J) + v({β, α}, I ∩ Jc) + v({β, α}, Ic)
= v({α, β}, I ∩ J) + v({β, α}, I ∩ Jc)
= v({αI∩J β, β I∩Jα}, I ∩ J) + v({αI∩J β, β I∩Jα}, I ∩ Jc).

Lemma 8. Let ≿ be represented by ∑E v(a(E), E) with v(m, E) = v(m′, E)
whenever m and m′ agree on E and fulfill Axiom 4 and 12. If I1, I2, . . . are
hidden identified sets, then I∗ =

⋂∞
i=1 Ii is also a hidden identified set.

Proof. Pick α, β ∈ X such that α ≻ β. Let Jp =
⋂p

i=1 Ii. Let mp =
{αJp β, β Jp α}. Since each Jp is a hidden identified set, we have

mp ∼ mp
Jp mp for all p.

Let m∗ = {αI∗β, β I∗α}. Since Jp ↘ I∗, we have Jp ; I∗ and mp ; m∗,
which implies

mp
Jp mp ; m∗

I∗m∗ and

mp
S ; m∗

S.

By Continuity,
m∗ ∼ m∗

I∗m∗.
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Proof. We only prove sufficiency of the axioms. From theorem 1, we
obtain a representation U( f ) = ∑E∈ι( f ) v( f (E), E). From Lemma 1 and
Lemma 2 we know that a (potentially trivial) hidden information sigma
algebra exists and that v(m, ·) is a measure when restricted to the sub
sigma algebra H|E. By the Radon Nikodym Theorem, since v is finite and
additive with respect to H|E, and v( f (E), E) = 0 if µ(E) = 0, we have
that for all F ∈ H|E, v(m, F) =

∫
F wF(m, s)dµH|F(s) where w is the Radon

Nikodym derivative of v with respect to µH|F.
We claim that for each E, and for each I ∈ H|E,

v(m, I) =
∫

I
max
b∈m

wE({b}, s)dµH|E.

Let m = {b1, . . . , bp}, m1 = {b1}, m2 = {b1, b2}, . . . , and mp = m. The
claim is valid when p = 1, i.e., |m| = 1. Assume by induction that the
claim is correct when p = k. By the uniqueness of Randon-Nikodym
derivative, maxb∈mk wE({b}, s) is equal to wE(mk, s) up to a µH|E-null set.

We distinguish between three possible cases. Suppose first v(mk+1, E) =
v(mk, E). By Axiom 6, for all I ∈ H|E,

v(mk+1, I) ≥ max
{

v(mk, I), v({bk+1}, I)
}

.

Assume by contradiction that v(mk+1, I) > v(mk, I) for some I ∈ H|E such
that µH|E(I) > 0. Then by Axiom 8,

v(mk+1, E) = v(mk+1, I) + v(mk+1, E − I)

> v(mk, I) + v(mk, E − I) = v(mk, E),

a contradiction. Hence, for all I ∈ H|E,

v(mk, I) = v(mk+1, I) ≥ v({bk+1}, I).

Equivalently, for all I ∈ H|E,∫
I

wE(mk+1, s)dµH|E =
∫

I
wE(mk, s)dµH|E ≥

∫
I

wE({bk+1}, s)dµH|E,

which implies that

wE(mk+1, s) = wE(mk, s) ≥ wE({bk+1}, s) a.e. with respect to µH|E.
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Consequently, the following equalities hold a.e. with respect to µH|E:

wE(mk+1, s) = max
{

wE(mk, s), wE({bk+1}, s)
}

= max
{

max
b∈mk

wE({b}, s), wE({bk+1}, s)
}

= max
b∈mk+1

wE({b}, s),

which implies

v(mk+1, E) =
∫

E
wE(mk+1, s) dµH|E =

∫
E

max
b∈mk+1

wE
(
{b}, s

)
dµH|E.

The case that v(mk+1, E) = v({bk+1}, E) is analogous. Suppose now
v(mk+1, E) > v(mk, E) and v(mk+1, E) > v({bk+1}, E). By Axiom 8, there
exists an hidden identified set H∗ such that

v(mk+1, E ∩ H∗) = v(mk, E ∩ H∗) and (16)

v(mk+1, E ∩ H∗) = v({bk+1}, E ∩ H∗). (17)

Let I∗ = E ∩ H∗. Note that I∗ ∈ H|E. By Axiom 6, (16), and (17),

v
(
mk+1, I

)
= v

(
mk, I

)
≥ v

(
{bk+1}, I

)
for all I ∈ H|I∗ and

v
(
mk+1, I

)
= v

(
{bk+1}, I

)
≥ v

(
mk, I

)
for all I ∈ H|E − I∗.

By the argument similar to the above, we have

v(mk+1, E) = v(mk+1, I∗) + v(mk+1, E − I∗)

=
∫

I∗
wE(mk+1, s) dµH|E +

∫
E−I∗

wE(mk+1, s) dµH|E

=
∫

I∗
max

b∈mk+1
wE({b}, s) dµH|E +

∫
E−I∗

max
b∈mk+1

wE({b}, s) dµH|E

=
∫

E
max

b∈mk+1
wE({b}, s) dµH|E.

Lastly, by the instrumental knowledge property the utility of every sub-
sequent act conditional on an event is additively decomposable into the
utility of its outcomes as previously shown for the case without hidden
information.

Lemma 9. Let Hn be the closure of H0 under finite unions and intersections.
Then for all disjoint E, F ∈ Hn, v(E, m) + v(F, m) = v(E ∪ F, m).
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Proof. Since E and F are finite unions and intersections of elements of
H0, there exists an enumeration H1, . . . , Hn of these elements. For all
k = 1, . . . , n, define Pk = {H1, H1} ∧ . . . ∧ {Hk, Hk}. E ∪ F, E, and F can be
decomposed into a finite union of elements of the partition Pn.

Lemma 10. If an event J can be decomposed into elements of Pn, then v(J, m) =

∑P∈Pn :P⊆J v(P, m).

Proof. Since H1 is an HIS, v(J) = v(J ∩ H1, m) + v(J ∩ H1, m). Since Hk is
an HIS, for all elements G of Pk−1 and all E, v(G ∩ Hk ∩ J, m) + v(G ∩ Hk ∩
J, m) = v(G ∩ J, m). Note that because v(∅, m) = 0, if G ∩ Hk ∩ J = ∅ or
G ∩ Hk ∩ J = ∅, the result is trivially true. Otherwise, the result follows
from property 4 of an HIS. By induction over k, we then obtain the desired
result.

It then follows from disjointness of E and F that

v(E ∪ F, m) = ∑
P∈Pn :P⊆E∪F

v(P, m)

= ∑
P∈Pn :P⊆E

v(P, m) + ∑
P∈Pn :P⊆F

v(P, m)

=v(E, m) + v(F, m). (18)

Let H be the closure of H0 under countable unions and intersections.
Let H|E be the conditional sigma algebra of H given event E.

Lemma 11. For all m, vE,m defined by vE,m(F) = v(F ∩ E, m) is a finite measure
on H.

Proof. First, observe that v(S, m) is finite. Second, we show that v is
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sigma-additive.

v

(
∞⋃

i=1

Fi, m

)
= lim

n→∞
v

(
∞⋃

i=1

Fi, m

)

= lim
n→∞

{
v

(
n⋃

i=1

Fi, m

)
+ v

(
∞⋃

i=n+1

Fi, m

)}

= lim
n→∞

{
n

∑
i=1

v(Fi, m) + v

(
∞⋃

i=n+1

Fi, m

)}

=
∞

∑
i=1

v(Fi, m) + 0.

where the last step follows from monotone continuity of v.

We now choose an arbitrary probability measure µ on E such that
all null sets have zero probability. Since v is zero on all null sets, it is
absolutely continuous with respect to µ. By the Radon-Nikodym theorem,
we then have that v(E, m) =

∫
E vmdµH|E for an appropriate density vm.

What is left to do is to determine v(E, m) for all E.
By Axiom 8, for every menu m ∪ n and event E there exists an event I

such that mIn ∼E m∪n. Thus, every f = m1
E1

. . . mn ∼ {b1,1
E1∩I1

b1,2
E1∩I2

. . . bn,kn}
for arbitrary enumerations {bi,1, . . . , bi,ki} of the elements of mi. Moreover,
bi,k must be optimal on Ei ∩ Ik by the Hidden Indirect Utility Property
and the Positive Value of Flexibility. Thus, v(Ei ∩ Ik, {bi,k}) = v(Ei ∩ Ik, m)
and v(Ei ∩ Ik, {bi,k}) ≥ v(Ei ∩ Ik, {b′}) for all b′ ∈ m. It follows that
v(E, m) =

∫
E maxb∈m vbdµH|E.

F Proof of Theorem 2

We first prove that our likelihood relation is a qualitative probability. Using
a result by Villegas (1964), we then show that the likelihood relation can
be represented by a quantitative probability. Finally, we factor out the
probabilities from the additive representation in Theorem 1 and apply
the indirect utility property and the instrumental knowledge property
to obtain that the decision maker maximizes across a state independent
expected utility over outcomes.
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Definition 20 (Qualitative Probability). A binary relation R on E is a
qualitative probability if it fulfills the following conditions:

1. R is a weak order.

2. For all E ∈ E: SRER∅ and not ∅RS.

3. If E, F are disjoint from G, then ERF ⇔ E ∪ GRF ∪ G.

Lemma 12. Assume Axiom 1, 2, 10, 9, and 7 hold. Then ≿∗ is a qualitative
probability.

Proof. We check Definition 20 in three steps.

Step 1. ≿∗ is a weak order.

Completeness follows directly from completeness of ≿. Suppose now
E ≿∗ F and F ≿∗ G. Then for some α, β, γ, δ ∈ X with {α} ≻ {β} and
{γ} ≻ {δ}, we have that {α}E{β} ≿ {α}F{β} and {γ}F{δ} ≿ {γ}G{δ}.
By Axiom 11, {α}F{β} ≿ {α}G{β}. By transitivity of ≿, {α}E{β} ≿
{α}G{β}. Hence, E ≿∗ G and transitivity of ≿∗ holds.

Step 2. For all E ∈ E, S ≿∗ E ≿∗ ∅ and not ∅ ≿∗ S.

Let {α} ≻ {β}. If Ec is null, then {α}E{α} ∼ {α}E{β}. If Ec is nonnull,
then by Axiom 10, {α}E{α} ≻ {α}E{β}. By Axiom 7, {α}E{α} ∼ {α} =
{α}S{β}. Thus, in either case, {α}S{β} ≿ {α}E{β}, which implies S ≿∗ E.

E ≿∗ ∅ is proven in a similar approach. If E is null, then {α}E{β} ∼
{β}E{β}. If E is nonnull, then by Axiom 10, {α}E{β} ≻ {β}E{β}. By
Axiom 7, {β}E{β} ∼ {β} = {α}∅{β}. Thus, in either case, {α}E{β} ≿
{α}∅{β}, which implies E ≿∗ ∅.

Finally, note that {α} = {α}S{β} and {β} = {α}∅{β}. Hence, S ≻∗ ∅.

Step 3. If E, F are disjoint from G, then E ≿∗ F ⇐⇒ E ∪ G ≿∗ F ∪ G.

E ≿∗ F holds if and only if for some {α} ≻ {β}, {α}E{β} ≿ {α}F{β}.
By Axiom 7, this is equivalent to {α}E{β}G{β} ≿ {α}F{β}G{β}. By
Axiom 2, this is equivalent to {α}E{α}G{β} ≿ {α}F{α}G{β}. By Axiom 7

again, this is equivalent to {α}E∪G{β} ≿ {α}F∪G{β} and thus E ∪ G ≿∗

F ∪ G.

Lemma 13 (Quantitative Probability, (Villegas, 1964)). If E has no atoms and
≿∗ is a qualitative probability, then there exists a unique probability measure
µ : E → [0, 1] that represents ≿∗.
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Proof. By Villegas (1964), Theorem 3.

Lemma 14 (Probability Weighted Representation). ≿ can be represented by:

U(a) = ∑
E∈ι(a)

µ(E)v
(
a(E), E

)
(19)

with v
(
{α}, E

)
= v

(
{α}, F

)
for all nonnull events E, F and all outcomes α ∈ X.

Proof. (sketch) We first show that µ(E) = 0 if and only if E is null. Since
µ(∅) = 0, it suffices to show E ∼∗ ∅ if and only if E is null. E is null if
and only if for all outcomes, αEβ ∼ β. By Axiom 11, E ∼∗ ∅.

From the additive representation in the previous Lemma and that
µ(E) = 0 only if E is null, it follows that we can rewrite the representation
into the desired form. It remains to show that v(E, x) = v(F, x).

We claim that we can choose v such that v(E, x) = v(F, x). If acts
are restricted to singleton menus, by Axiom 7, we can show that the
premises of Savage’s theorem are satisfied. Hence, we have an expected
utility ∑E∈ι(a) µ(E)w(a(E)). Consider two information partitions P and Q
that contain E. Fix the partition P first. Then both ∑G∈P µ(G)v(G, a(G))
and ∑G∈P µ(G)w(a(G)) are additive representations of the preference
relation restricted to {a|ι(a) = P ∧ ∀E ∈ P : |a(E)| = 1}, the set of all
acts that consist of singleton menus and information partition P. Thus,
v(G, a(G)) = σPw(a(G)) + τP,G. In particular, v(E, x) = σPw(x) + τP,E.
Similarly, if we fix the partition Q, then v(E, x) = σQw(x) + τQ,E. Thus,
we have

σP

(
w(x)− w(y)

)
= v(E, x)− v(E, y) = σQ

(
w(x)− w(y)

)
.

Hence, σP = σQ ≡ σ and τP,E = v(E, x) − σw(x) = τQ,E ≡ τE. Finally,
let v̂ = v−τE

σ . Then v̂(E, x) = w(x), which is independent of E and thus
v̂(E, x) = v̂(F, x). Since v̂ is an affine transformation of v, it still represents
the preference relation.

Using an analogous proof to proposition 1, we obtain that each v(F, m) =
maxb∈m µ(F)v(F, {b}). The instrumental knowledge property in turn guar-
antees that µ(F)v(F, {b}) = ∑x µ(F ∩ b−1(x))v(F, {x}). Since we have
shown above that v(F, {x}) does not depend on events, it can be replaced
by a suitably chosen utility function over outcomes u(x).
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G Monotone Sequences of Acts and Events

Lemma 15. If Ek ↗ E or Ek ↘ E, then Ek ; E.

Proof. Suppose Ek ↗ E. Since Ek ⊆ E for all k, the second condition holds.
Assume by contradiction that the first condition does not hold, i.e., there
exists nonnull event F ⊊ E and for each N, there exists k > N such that
F ∩ Ek = ∅. Since (Ek) is non-decreasing, this means F ∩ Ek = ∅ for all k
and thus F ∩ E = ∅, a contradiction. Hence, the first condition holds.

Suppose Ek ↘ E. Since E ⊆ Ek for all k, the first condition hold. Since
(Ek) is non-increasing, we have if F ⊊ EN , then F ⊊ El for all l < N. Thus,
if F satisfies the premise of the second condition, then F ⊊ Ek for all k.
Hence, F ∩ E = ∅ and the second condition holds.

Lemma 16. Let (Ek) be a sequence of events. Suppose for all ε, there exists N
such that µ̂(Ei△Ej) < ε if i, j > N. Then (Ek) converges in subject belief to
lim supk→∞ Ek.

Proof. Recall Definition 4. Suppose that the first condition does not hold.
That is, there exists a nonnull F ⊊ lim supk→∞ Ek and for each N, there
exists k > N such that F ∩ Ek = ∅. Construct accordingly a subsequence
(El) satisfying F ∩ El = ∅ for all l. Since F ⊊ lim supk→∞ Ek, we can
construct another subsequence (El′) satisfying F ⊆ El′ for all l′. If Ei ∈ (El)
and Ej ∈ (El′), then µ(Ei△Ej) ≥ µ(F) > 0, a contradiction.

To see the second condition holds, pick a nonnull F satisfying the re-
quirement. Observe that F ⊆ ⋃∞

k=N Ek for all N. Hence, F ⊆ ⋂∞
N=1

⋃∞
k=N Ek =

lim supk→∞ Ek.

Lemma 17. Ek ; E if and only if Ek converge in measure µ̂ to E.

Proof.
lim
k→∞

µ̂
(
{s ∈ S : |1Ek(s)− 1E(s)| > ε}

)
= 0.

{s ∈ S : |1Ek(s)− 1E(s)| > ε} = Ek△E.

lim
k→∞

µ̂(Ek△E) = 0.

(=⇒) Suppose limk→∞ µ̂(Ek△E) = 0. Pick nonnull F ⊊ E. Assume by
contradiction that (E1) does not hold. Then for each N, there exists i > N
such that F ∩ Ei = ∅. Construct a subsequence (Ei) accordingly. Then
µ̂(Ei△E) ≥ µ̂(E \ Ei) ≥ µ̂(F) for all i, a contradiction.
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Assume by contradiction that (E2) does not hold. Then there exists a
nonnull F and a subsequence (Ei) such that F ⊊ Ei for all i and F ∩ E = ∅.
This implies µ̂(Ei△E) ≥ µ̂(Ei \ E) ≥ µ̂(F) for all i, a contradiction.

(⇐=) Suppose Ek ; E. Assume by contradiction that µ̂(Ek \ E) does
not converge to 0. Then there exists ε and a subsequence (Ei) such that
µ̂(Ei \ E) > ε for all i. Consequently, for all i,

µ̂

(⋃
n≥i

En \ E

)
≥ µ̂(Ei \ E) > ε.

Since the above inequality holds for all i, we have

µ̂(lim sup Ei \ E) > ε.

This contradicts to (E2) by picking F = lim sup Ei \ E.
Similarly, assume by contradcition that µ̂(E \ Ek) does not converge to

0. Then there exists ε and a subsequence (Ej) such that µ̂(E \ Ej) > ε for
all j. Consequently, for all j,

µ̂

E \
⋂
n≥j

En

 ≥ µ̂(E \ Ej) > ε.

Since the above inequality holds for all j, we have

µ̂(E \ lim inf Ej) > ε.

This contradicts to (E1) by picking F = E \ lim inf Ej.
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