### Preference for Verifiability

Hendrik Rommeswinkel

Hitotsubashi University and Waseda Institute for Advanced Study

January 2025







#### Contribution

- Parsimonious theory of greenwashing.
  - Identification of a principal-agent relationship from behavior
  - We only observe the agent's preferences over acts
- Decision theory with unobservable outcomes.
  - Unobservable outcomes provide motivation for relaxing STP to Comonotonicity/Certainty independence
  - In this paper: DM cares about what is ex-post certain

#### General Idea

- Decision theory implicitly assumes that outcomes are observable.
- Decision makers may care about unobservable outcomes (e.g., due to altruism, legitimacy, etc.).
- Decision makers may care about verifying/obfuscating whether good/bad outcomes have been achieved.
- Analysts may care about identifying such decision models (e.g., no greenwashing)

#### Relation to Literature

- Dual-self ambiguity aversion: Chandrasekher et al. (2022)
- Cominimum Additivity: Kajii et al. (2007), Kajii et al. (2009)
- Contract theory: Bull and Watson (2004)
- Definitions of greenwashing: de Freitas Netto et al. (2020)
- Formal models of greenwashing: Wu et al. (2020)
- Green products: Groening et al. (2018)



#### Carbon Reduction Decision Problem

- Carbon emissions (outcomes) not directly observable
- Efficacy of offset/reduction methods uncertain (depends on state of the world)
- Firm chooses between different carbon offset/reduction methods (acts)
- Information about state of the world released afterwards (verifiable events)

### Example: States, Acts, Outcomes

- States  $S = \{s, t, u\}$
- Outcomes  $\mathfrak{X} = \mathbb{R}$ : CO2 emission reduction
- Acts A: emission reduction methods



#### Available Alternatives

Assume total expenditure on CO2 mitigation is fixed. Firm chooses one of three alternatives:

- Nature based carbon removal: ex-ante uncertain but ex-post verifiable
- RECs: ex-ante and ex-post uncertain reduction
- Emission reduction: low but ex-ante certain reduction.

### Substitution effect in RECs?



### Example: States of the World

Three states of the world:

- s: high availability of offsets, substitution
- t: high availability of offsets, no substitution
- u: low availability of offsets

Assume  $\{s, t\}$  and  $\{s, t, u\}$  are ex post verifiable.

# Example: Decision Matrix

|            | 5  | t   | и  |
|------------|----|-----|----|
| Trees      | 70 | 70  | 10 |
| RECs       | 60 | 100 | 10 |
| Efficiency | 40 | 40  | 40 |

# Preference for Verification



### Preference for Verification

- Firm wants to prove to stakeholders that they *have definitely* offset a certain amount of carbon emissions
- Firm fears to have no proof of offset.
- Example: Apple chose nature based carbon removal in UN Race to Zero Campaign

# Preference for Verification Timing



### **Expected Verification Utility**

#### Definition (Expected Verification Utility)

A preference relation  $\succsim$  on  $\mathcal A$  is an expected verification utility if there exists a nonempty set of events  $\mathcal V\subseteq\mathcal E$ , closed under intersection, a probability measure  $\mu:\mathcal E\to[0,1]$ , and a convex-valued utility function  $u:\mathcal X\to\mathbb R$  such that

$$U(a) = \int_{s \in S^*} \max_{E \in \mathcal{V}: s \in E} \min_{t \in E} u(a(t)) d\mu$$
 (1)

represents  $\succeq$ .

### Interpretation

- If state  $s \in E \in \mathcal{V}$  obtains, then DM receives a proof that E obtains.
- DM can use the proof to show stakeholders that at least utility  $\min_{s \in E} u(a(s))$  has been achieved.
- DM can combine multiple proofs.

### Preference for Obfuscation



#### Preference for Obfuscation

- Firm wants to point out to stakeholders that they *might have* offset a certain amount of carbon emissions
- Firm fears someone has proof how much they actually offset.
- Example: Foxconn chose RECs in UN Race to Zero Campaign

# Preference for Obfuscation Timing



### **Expected Obfuscation Utility**

#### Definition (Expected Obfuscation Utility)

A preference relation  $\succsim$  on  $\mathcal A$  is an expected obfuscation utility if there exists a nonempty set of events  $\mathcal V\subseteq\mathcal E$ , closed under intersection, a probability measure  $\mu:\mathcal E\to[0,1]$ , and a convex-valued utility function  $u:\mathcal X\to\mathbb R$  such that

$$U(a) = \int_{s \in S^*} \min_{E \in \mathcal{V}: s \in E} \max_{t \in E} u(a(t)) d\mu$$
 (2)

represents  $\succeq$ .

### Interpretation

- If state  $s \in E \in \mathcal{V}$  obtains, then the stakeholder receives a proof that E obtains.
- Stakeholder can use the proof to show that at most utility  $\max_{s \in E} u(a(s))$  has been achieved.
- Stakeholder can combine multiple proofs.

#### Verifiable Events

- lacksquare  $\gamma$  is a  $\pi$ -system
- If I can prove that E is true and I can prove that F is true then I can prove that  $E \cap F$  is true.
- If all I care about is the worst possible outcome on an event, then I don't ever need to show that  $E \cup F$  is true.

### Structural Assumption

#### Axiom (Biseparable Preference (Ghirardato & Marinacci, 2001))

 $\succsim$  is a biseparable preference if there exists a monotonic representation  $U:\mathcal{A}\to\mathbb{R}$ , an event  $E\in\mathcal{E}^{**}$ , a set function  $\mu:\mathcal{E}\to[0,1]$ , such that for all  $\gamma\succsim\beta$  and all events  $F\in\mathcal{E}$ :

$$U(\gamma F \beta) = \mu(F)U(\gamma) + (1 - \mu(F))U(\beta) \tag{3}$$

 $U(\mathfrak{X})$  is convex.

### Preference Averages

#### Definition (Preference Average (Ghirardato et al., 2003))

For all  $x, y \in \mathcal{X}$  with  $x \succeq y$ , z is a preference average of x and y if  $x \not\in y \sim [x \not\in z] E[z \not\in y]$ . z is denoted by  $1/2x \oplus 1/2y$ .

Define preference averages of acts pointwise:  $c=1/2a\oplus 1/2b$  if in all states s we have  $c(s)=1/2a(s)\oplus 1/2b(s)$ .

# Comonotonicity

#### Definition (Comonotonic Acts)

Acts  $a, b \in A$  are comonotonic if for all  $s, s' \in S$ ,

- $a(s) \succ a(s') \Rightarrow b(s) \succsim b(s')$ , and
- $b(s) > b(s') \Rightarrow a(s) \succsim a(s')$ .

### Comontonic Independence

#### Axiom (Comonotonic Independence)

 $\succeq$  fulfills comonotonic independence if for all comonotonic a, b, c,  $a \succeq b$  if and only if  $1/2a \oplus 1/2c \succeq 1/2b \oplus 1/2c$ .

# Supermodularity

#### Axiom (Supermodularity)

 $\succsim$  fulfills *supermodularity* if for all events E, F, and all outcomes  $\gamma \succ \beta \in \mathcal{X}$ ,

 $1/2[\gamma E \cup F\beta] \oplus 1/2[\gamma E \cap F\beta] \succsim 1/2[\gamma E\beta] \oplus 1/2[\gamma F\beta]$ 

# Submodularity

#### Axiom (Submodularity)

 $\succsim$  fulfills *submodularity* if for all events E, F, and all outcomes  $\gamma \succ \beta \in \mathcal{X}$ ,

 $1/2[\gamma E \cup F\beta] \oplus 1/2[\gamma E \cap F\beta] \lesssim 1/2[\gamma E\beta] \oplus 1/2[\gamma F\beta]$ 

#### Critical Events

#### Definition (Critical Event)

An event E is min-increasing if  $\gamma E\beta \nsim \gamma E - F\beta$  for all nonnull events  $F \subset E$  and some outcomes  $\gamma \succ \beta$ .

In an expected verification utility, an event E is min-increasing if there exists a subset of  $\mathcal V$  containing only subsets of E that jointly cover E.

#### Critical Events

#### Definition (Critical Event)

An event E is max-increasing if  $\beta_{E \cup F} \gamma \succ \beta_E \gamma$  for all nonnull events  $F \subset \overline{E}$  and some outcomes  $\gamma \succ \beta$ .

In an expected obfuscation utility, an event E is max-increasing if there exists a subset of  $\mathcal V$  containing only subsets of E that jointly cover E.

#### Critical Events

- In the two representations, min-increasing events and max-increasing events play the exact same role.
- I therefore simply refer to these as *critical* events.
- Critical means that either min-increasing or max-increasing holds.

### Critical Event Modularity

#### Axiom (Critical Event Modularity)

 $\succsim$  fulfills *critical event modularity* if for all critical events E, F, and any event  $A \subseteq E \cup F$ ,

- **1**  $E \cap F$  is a critical event,
- **2**  $E \cup F$  is a critical event, and
- 3  $1/2[\gamma A\beta] \oplus 1/2[\gamma A \cap E \cap F\beta] \sim 1/2[\gamma A \cap E\beta] \oplus 1/2[\gamma A \cap F\beta]$

#### Theorem (Verification Representation Theorem)

Suppose  $\succeq$  is a biseparable preference with representation U and set function  $\mu$ . Then the following statements are equivalent:

- tulfills Comonotonic Independence, Supermodularity, and Critical Event Modularity.
- ≥ ≿ is an expected verification utility.

#### Theorem (Obfuscation Representation Theorem)

Suppose  $\succeq$  is a biseparable preference with representation U and set function  $\mu$ . Then the following statements are equivalent:

- tulfills Comonotonic Independence, Submodularity, and Critical Event Modularity.
- ≥ is an expected obfuscation utility.

# Uniqueness

#### Uniqueness

Suppose  $\succsim^1$  and  $\succsim^2$  are expected verification utilities. Then  $a \succsim^1 b \Leftrightarrow a \succsim^2 b$  for all  $a, b \in \mathcal{A}$  if and only if:

- $U^1 = \theta U^2 + \phi$ ,
- $cl_{\cup}(\mathcal{V}^1) = cl_{\cup}(\mathcal{V}^2),$
- $\forall E \in \mathcal{V}^1 \cap \mathcal{V}^2 : \mu^1(E) = \mu^2(E).$

# Comparative Statics

#### **Comparative Statics**

Suppose  $\succsim^1$  and  $\succsim^2$  are expected verification utilities with  $\gamma \succ^1 \beta$  and  $\gamma \succ^2 \beta$  and identical null events. Then the following statements are equivalent:

- $\mathcal{V}^1 \subset \mathcal{V}^2$ .
- $2 \gamma E \beta \sim^2 \gamma (E F) \beta$  implies  $\gamma E \beta \sim^1 \gamma (E F) \beta$

### Other Comparative Statics & Results

- Comparative risk aversion well defined via ⊕. Unrelated to critical events.
- Ambiguous events: non-critical events.
- Welfare: deviation from EU maximization depends on decision problem.
- Information preference: expected verification (obfuscation) utility seeks larger (smaller) V.

### Cominimum Independence

#### Cominimum Acts

Two acts a, b are  $\mathbb{C}$ -cominimum if for all  $E \in \mathbb{C}$ ,  $\arg_{s \in E} \min_{\succeq} a(s) \cap \arg_{s \in E} \min_{\succeq} b(s) \neq \emptyset$ .

#### Cominimum Independence

A preference  $\succeq$  is  $\mathcal{C}$ -cominimum independent if it fulfills the independence axiom for  $\mathcal{C}$ -cominimum independent acts.

# Characterization with exogeneous ${\cal V}$

- Theorem 2 of Kajii et al. (2007) characterizes a similar functional form when verifiable events are given/known.
- V-cominimum independence provides a direct behavioral test when the information partition of the state space is objective, i.e., if it is known what environmental studies will be performed.

# A decision theory for unobservable outcomes

- Theoretical treatments of unobservable outcomes (e.g., in the marketing literature) not satisfactory
- Unobservable outcomes are ubiquitous:
  - Donations/charitable giving
  - Green products
  - Toxicity, long-term health effects
  - Products with ex-post uncertainty about effect on well-being
- Much research and applications to be done.

# Concluding Remarks

- First attempt at a decision theory with unobservable outcomes.
- Beliefs and verifiable events (mostly) identifiable.
- Model can be used to identify greenwashing vs. legitimacy-seeking in the context of CO2 mitigation.

Thank You!

- Bull, J., & Watson, J. (2004). Evidence disclosure and verifiability. *Journal of Economic Theory*, 118(1), 1–31.
- Chandrasekher, M., Frick, M., Iijima, R., & Le Yaouanq, Y. (2022).Dual-self representations of ambiguity preferences. *Econometrica*, 90(3), 1029–1061.
- de Freitas Netto, S. V., Sobral, M. F. F., Ribeiro, A. R. B., & da Luz Soares, G. R. (2020). Concepts and forms of greenwashing: A systematic review. *Environmental Sciences Europe*, 32(19), 1–12.
- Ghirardato, P., & Marinacci, M. (2001). Risk, ambiguity, and the separation of utility and beliefs. *Mathematics of operations* research, 26(4), 864–890., 26(4), 864–890.
- Ghirardato, P., Maccheroni, F., Marinacci, M., & Siniscalchi, M. (2003). A subjective spin on roulette wheels. *Econometrica*, 71(6), 1897–1908.



- Kajii, A., Kojima, H., & Ui, T. (2007).Cominimum additive operators. *Journal of Mathematical Economics*, 43, 218–230.
- Kajii, A., Kojima, H., & Ui, T. (2009). Coextrema additive operators. In S. K. Neogy, A. K. Das, & R. B. Bapat (Eds.), Modeling, computation and optimization (pp. 73–95). World Scientific.
  - Wu, Y., Zhang, K., & Xie, J. (2020).Bad greenwashing, good greenwashing: Corporate social responsibility and information transparency. *Management Science*, 66(7), 3095–3112.